

TGS2610-C00 - for the detection of LP Gas

Features:

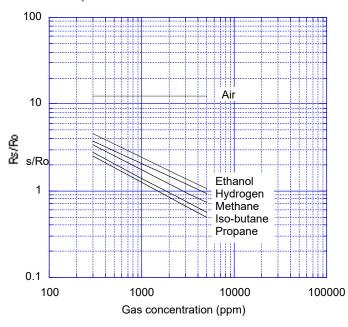
- * Quick response
- * Low power consumption
- * Long life and low cost
- * Uses simple electrical circuit

Applications:

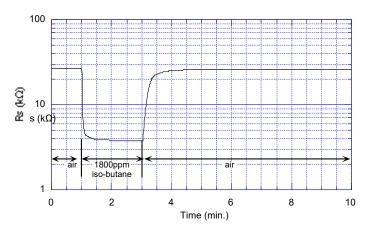
- * Portable LP gas detectors
- * LP gas and vapor detection

TGS2610-C00 is a semiconductor type gas sensor which combines very high sensitivity to LP gas with low power consumption and long life. Due to miniaturization of its sensing chip, TGS2610-C00 requires a heater current of only 56mA and the device is housed in a standard TO-5 package.

TGS2610-C00 possesses small size and quick gas response, making it suitable for gas leakage checkers.


The TGS2610-C00 is able to satisfy the requirements of performance standards such as UL1484 and EN50194.

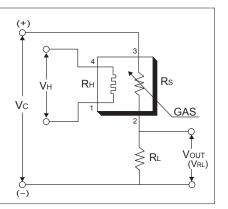
The figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis indicates sensor resistance ratio (Rs/Ro) which is defined as follows:


Rs = Sensor resistance at various concentrations Ro = Sensor resistance in 1800ppm of iso-butane

Sensitivity Characteristics:

The figure below represents the typical response pattern when the sensor is inserted into and later removed from 1800ppm of iso-butane.

Gas Response to Iso-butane:


IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

FIGARO

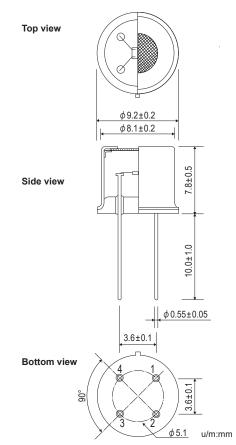
Basic Measuring Circuit:

The sensor requires two voltage inputs: heater voltage (V_H) and circuit voltage (V_C). The heater voltage (V_H) is applied to the integrated heater in order to maintain the sensing element at a specific temperature which is optimal for sensing. Circuit voltage (V_C) is applied to allow measurement of voltage (Vout) across a load resistor (R_L) which is connected in series with the sensor.

A common power supply circuit can be used for both V_C and V_H to fulfill the sensor's electrical requirements. The value of the load resistor (R_L) should be chosen to optimize the alarm threshold value, keeping power dissipation (P_S) of the semiconductor below a limit of 15mW. Power dissipation (P_S) will be highest when the value of R_S is equal to R_L on exposure to gas.

Specifications:

<u>opecineutions.</u>				
Model number			TGS2610-C00	
Sensing principle			MOS type	
Standard package			TO-5 metal can	
Target gases			Butane, LP gas	
Typical detection range			1~25% LEL	
Standard circuit conditions	Heater voltage	Vн	5.0±0.2V DC	
	Circuit voltage	Vc	5.0±0.2V DC	Ps≤15mW
	Load resistance	RL	variable	0.45kΩ min.
Electrical characteristics under standard test conditions	Heater resistance	Rн	approx 59Ω at room temp.	
	Heater current	Ін	56±5mA	
	Heater power consumption	Рн	280mW	VH = 5.0V DC
	Sensor resistance	Rs	1.0~10.0kΩ in 1800ppm iso-butane	
	Sensitivity (change ratio of Rs)		0.45~0.62 in iso-butane	Rs (3000ppm) Rs (1000ppm)
Standard test conditions	Test gas conditions		iso-butane in air at 20±2°C, 65±5%RH	
	Circuit conditions		Vc = 5.0±0.01V DC VH = 5.0±0.05V DC	
	Preheating period before test		7 days	


The value of power dissipation (Ps) can be calculated by utilizing the following formula:

$$Ps = \frac{(Vc - V_{RL})^2}{Rs}$$

Sensor resistance (Rs) is calculated with a measured value of Vout(VRL) by using the following formula:

$$Rs = (\frac{Vc}{VRL} - 1) x RL$$

Structure and Dimensions:

Pin connection:

- 1: Heater
- 2: Sensor electrode (-)
- 3: Sensor electrode (+)
- 4: Heater

All sensor characteristics shown in this brochure represent typical characteristics. Actual characteristics vary from sensor to sensor. The only characteristics warranted are those in the Specification table above.

Before purchasing this product, please read the Warranty Statements shown in our webpage by scanning this QR code.

inty Statements ge by scanning

 $https://www.figaro.co.jp/en/pdf/Limited_Warranty_en.pdf/\\$

FIGARO ENGINEERING INC.

1-5-11 Senba-nishi

Mino, Osaka 562-8505 JAPAN Phone: (81)-727-28-2045 URL: www.figaro.co.jp/en/

REV: 03/22